Energy-Based Temporal Neural Networks for Imputing Missing Values

نویسندگان

  • Philemon Brakel
  • Benjamin Schrauwen
چکیده

Imputing missing values in high dimensional time series is a difficult problem. There have been some approaches to the problem [11, 8] where neural architectures were trained as probabilistic models of the data. However, we argue that this approach is not optimal. We propose to view temporal neural networks with latent variables as energy-based models and train them for missing value recovery directly. In this paper we introduce two energy-based models. The first model is based on a one dimensional convolution and the second model utilizes a recurrent neural network. We demonstrate how ideas from the energy-based learning framework can be used to train these models to recover missing values. The models are evaluated on a motion capture dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural networks and predictive matching for flexible imputation

Let be a data matrix, with entries partly missing in the last columns. A problem of practical relevance is that of imputing the missing values in such an incomplete data set. We propose to use (partially) predictive matching coupled with a flexible fit, such as provided by a neural network. The merits and demerits of the approach suggested are discussed.

متن کامل

Speech Recognition with Missing Data using Recurrent Neural Nets

In the ‘missing data’ approach to improving the robustness of automatic speech recognition to added noise, an initial process identifies spectraltemporal regions which are dominated by the speech source. The remaining regions are considered to be ‘missing’. In this paper we develop a connectionist approach to the problem of adapting speech recognition to the missing data case, using Recurrent N...

متن کامل

Fuzzy Artmap and Neural Network Approach to Online Processing of Inputs with Missing Values

An ensemble based approach for dealing with missing data, without predicting or imputing the missing values is proposed. This technique is suitable for online operations of neural networks and as a result, is used for online condition monitoring. The proposed technique is tested in both classification and regression problems. An ensemble of Fuzzy-ARTMAPs is used for classification whereas an en...

متن کامل

Estimating Missing Data in Temporal Data Streams Using Multi-directional Recurrent Neural Networks

Missing data is a ubiquitous problem. It is especially challenging in medical settings because many streams of measurements are collected at different – and often irregular – times. Accurate estimation of those missing measurements is critical for many reasons, including diagnosis, prognosis and treatment. Existing methods address this estimation problem by interpolating within data streams or ...

متن کامل

Modeling Multivariate Spatio-Temporal Remote Sensing Data with Large Gaps

Prediction models for multivariate spatio-temporal functions in geosciences are typically developed using supervised learning from attributes collected by remote sensing instruments collocated with the outcome variable provided at sparsely located sites. In such collocated data there are often large temporal gaps due to missing attribute values at sites where outcome labels are available. Our o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012